Το Πείραμα αυτό συγκαταλέγεται στα 10 πιο όμορφα επιστημονικά πειράματα στην ιστορία της Φυσικής. Την ημέρα της Εαρινής Ισημερίας, που χαρακτηρίζεται ως «αρχή της Άνοιξης», ο Ήλιος βρίσκεται ακριβώς πάνω από τον Ισημερινό της Γης, με αποτέλεσμα η νύχτα και η ημέρα να έχουν ίση διάρκεια σε οποιοδήποτε σημείο της γήινης επιφάνειας. Έτσι, θεωρείται «ευκαιρία» να επαναλάβουμε το πείραμα του Ερατοσθένη, αφού γνωρίζουμε τον τόπο που ο Ήλιος ρίχνει τις ακτίνες του κατακόρυφα.
από το 1881 ... στο μέλλον (πρώην 28 Πειραματικά Ολοήμερα Σχολεία & πρώην ΕΑΕΠ)
Εμφάνιση αναρτήσεων με ετικέτα Εργαστήριο Μαθηματικών και Φυσικών Επιστημών. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα Εργαστήριο Μαθηματικών και Φυσικών Επιστημών. Εμφάνιση όλων των αναρτήσεων
Δευτέρα 11 Μαρτίου 2024
Τετάρτη 1 Απριλίου 2015
Solar eclipse
Την ηλιακή έκλειψη στις 20 Μαρτίου 2015, παρόλη την πρόσκαιρη χιονόπτωση καταφέραμε να παρακολουθήσουμε σε ένα μικρό άνοιγμα του συννεφιασμένου ουρανού και να φωτογραφίσουμε το φαινόμενο. Παράλληλα παρατηρήθηκε το φαινόμενο σε σύνδεση με το αστεροσκοπείο Γκρίνουϊτς όπου καλύφθηκε το 85% του ηλιακού δίσκου. Ήταν μια πρωτόγνωρη εμπειρία για όλους μας. Υλικό της φωτογράφισης θα σταλεί στο σχετική ομάδα του Open Discovery Space.
Solar eclipse on March 20, 2015, despite the temporary snowfall managed to watch a small opening of cloudy sky and to photograph the phenomenon. Alongside the phenomenon observed in connection with the Greenwich observatory where 85% of the solar disk covered. It was a new experience for us all. Gallery of photography will be sent to the relevant group of Open Discovery Space.
Eklips diellor më 20 mars 2015, përkundër reshjeve të borës së përkohshme arriti të shikojnë një hapje të vogël të qiellit me re dhe për të fotografuar fenomenin. Krahas fenomenit të vërejtur në lidhje me observatori Greenwich ku 85% e diskut diellor mbuluar. Kjo ishte një eksperiencë e re për të gjithë ne. Galeria e fotografisë do të dërgohet në grupin përkatës të Hapur Discovery hapësirë.
Solar eclipse on March 20, 2015, despite the temporary snowfall managed to watch a small opening of cloudy sky and to photograph the phenomenon. Alongside the phenomenon observed in connection with the Greenwich observatory where 85% of the solar disk covered. It was a new experience for us all. Gallery of photography will be sent to the relevant group of Open Discovery Space.
Eklips diellor më 20 mars 2015, përkundër reshjeve të borës së përkohshme arriti të shikojnë një hapje të vogël të qiellit me re dhe për të fotografuar fenomenin. Krahas fenomenit të vërejtur në lidhje me observatori Greenwich ku 85% e diskut diellor mbuluar. Kjo ishte një eksperiencë e re për të gjithë ne. Galeria e fotografisë do të dërgohet në grupin përkatës të Hapur Discovery hapësirë.
Πείραμα του Ερατοσθένη
Συμμετέχοντας το σχολείο μας στο δίκτυο "Eratosthenes Experiment" για δεύτερη συνεχή χρονιά, πραγματοποίησε στις 19 Μαρτίου 2015 το προγραμματισμένο πείραμα. Το σχολείο μας αντάλλαξε στοιχεία μετρήσεων με το 1ο Δημοτικό Σχολείο Αργοστολίου, το 33ο Δημοτικό Σχολείο Βόλου, το Μειονοτικό Γυμνάσιο - Λύκειο Κομοτηνής και το 6ο Λύκειο Ξάνθης. Παρόλες τις δυσκολίες του καιρού το κρίσιμο διάστημα ο ήλιος μας έκανε τη χάρη και μας βοήθησε στην μέτρηση.
By joining our school network "Eratosthenes Experiment" for the second consecutive year, held on March 19, 2015 the planned experiment. Our school exchange measurement data with the 1st Primary School of Argostoli, the 33rd Primary School of Volos, the Minority Middle School - Lyceum of Komotini and the 6th Lyceum of Xanthi. Despite the difficulties of the weather the period in the sun made us a favor and helped us to measure.
Duke u bashkuar rrjetit shkollor tonë "Eksperiment Eratosthenes" për të dytin vit radhazi, të mbajtur më 19 mars 2015 i eksperiment planifikuar. Këmbimit Shkolla jonë dhënave matje me Shkollën Fillore 1 e Argostoli, Shkollën fillore e 33 Volos, Shkolla e Mesme e Minoriteteve - Liceut të Komotinit dhe Liceut 6 të Xanthi. Me gjithë vështirësitë e motit periudhë në diell na bërë një nder dhe na ndihmoi për të matur.
By joining our school network "Eratosthenes Experiment" for the second consecutive year, held on March 19, 2015 the planned experiment. Our school exchange measurement data with the 1st Primary School of Argostoli, the 33rd Primary School of Volos, the Minority Middle School - Lyceum of Komotini and the 6th Lyceum of Xanthi. Despite the difficulties of the weather the period in the sun made us a favor and helped us to measure.
Duke u bashkuar rrjetit shkollor tonë "Eksperiment Eratosthenes" për të dytin vit radhazi, të mbajtur më 19 mars 2015 i eksperiment planifikuar. Këmbimit Shkolla jonë dhënave matje me Shkollën Fillore 1 e Argostoli, Shkollën fillore e 33 Volos, Shkolla e Mesme e Minoriteteve - Liceut të Komotinit dhe Liceut 6 të Xanthi. Me gjithë vështirësitë e motit periudhë në diell na bërë një nder dhe na ndihmoi për të matur.
Λίγα λόγια για το πείραμα ...
Το πείραμα του Ερατοσθένη βασίστηκε στη μέτρηση του ύψους του Ηλίου την ίδια ημερομηνία σε δύο διαφορετικές τοποθεσίες, καθώς και στην πεποίθηση του μεγάλου έλληνα μαθηματικού ότι ο Ηλιος είναι πολύ μακριά από τη Γη, τόσο ώστε οι ακτίνες του να φθάνουν στον πλανήτη μας σχεδόν παράλληλα. Από διηγήσεις ταξιδιωτών ο Ερατοσθένης έμαθε ότι στις 21 Ιουνίου, την ημέρα του θερινού ηλιοστασίου, ο Ηλιος καθρεφτίζεται στην επιφάνεια του νερού των πηγαδιών της πόλης Συήνης, αυτής που σήμερα οι Αιγύπτιοι ονομάζουν Ασουάν. Από την πληροφορία αυτή ο Ερατοσθένης συμπέρανε ότι η Συήνη βρίσκεται πάνω στον τροπικό του Καρκίνου, δηλαδή στον παράλληλο κύκλο με γεωγραφικό πλάτος 23,5 μοίρες. Το χαρακτηριστικό των τόπων που βρίσκονται στον τροπικό του Καρκίνου είναι ότι το μεσημέρι της 21ης Ιουνίου ο Ηλιος βρίσκεται στο ζενίθ, δηλαδή ακριβώς κατακόρυφα προς τα πάνω. Ετσι οι ακτίνες του διαδίδονται κατά μήκος των κατακόρυφων τοιχωμάτων των πηγαδιών, ανακλώνται στην επιφάνεια του νερού και επιστρέφουν προς την επιφάνεια, κάνοντας ορατό το είδωλό του σε έναν παρατηρητή που κοιτάζει από το στόμιο του πηγαδιού.
Το μεσημέρι της ημέρας του θερινού ηλιοστασίου ο Ερατοσθένης μέτρησε το ύψος του Ηλίου στην πόλη στην οποία κατοικούσε, την Αλεξάνδρεια της Αιγύπτου. Η μέτρηση έγινε με τη βοήθεια ενός οβελίσκου, ο οποίος είναι το αρχαιότερο αστρονομικό όργανο στην ιστορία της επιστήμης. Το μήκος της σκιάς που ρίχνει ο οβελίσκος, διαιρεμένο με το ύψος του οβελίσκου, μας δίνει, όπως μάθαμε στο σχολείο, την εφαπτομένη της γωνίας του ύψους του Ηλίου. Η γωνία αυτή, η οποία από τη μέτρηση του Ερατοσθένη προέκυψε 7,2 μοίρες, είναι ίση (ως «εντός-εκτός και επί τα αυτά», όπως θυμούνται οι παλαιότεροι) με την επίκεντρη γωνία που σχηματίζουν δύο ακτίνες της Γης με άκρα τη Συήνη και την Αλεξάνδρεια, υπό την προϋπόθεση ότι οι δύο πόλεις έχουν το ίδιο γεωγραφικό μήκος, βρίσκονται δηλαδή στον ίδιο μεσημβρινό. Επειδή από τη γεωμετρία γνωρίζουμε ότι η απόσταση των δύο πόλεων, η ακτίνα της Γης και η γωνία που μέτρησε ο Ερατοσθένης συνδέονται με τη σχέση απόσταση/ακτίνα = 6,28x(7,2/360), η ακτίνα της Γης βρίσκεται αμέσως αν γνωρίζουμε την απόσταση των δύο πόλεων. Την εποχή του Ερατοσθένη, περί το 250 π.Χ., δεν υπήρχε ακριβής μέθοδος μέτρησης τόσο μεγάλων αποστάσεων. Σύμφωνα με την παράδοση, ο Ερατοσθένης ανέθεσε σε επαγγελματίες βαδιστές να την υπολογίσουν, και το αποτέλεσμά τους το συνέκρινε με τις εκτιμήσεις αρχηγών καραβανιών. Το τελικό του αποτέλεσμα ήταν ότι η απόσταση Αλεξάνδρειας- Συήνης ισούται με 5.000 στάδια, οπότε η ακτίνα της Γης προκύπτει ίση με 252.000 στάδια.
Για να μπορέσουμε να εκτιμήσουμε την ακρίβεια της μέτρησης του Ερατοσθένη, θα έπρεπε να γνωρίζουμε πόσο είναι το μήκος ενός σταδίου σε μέτρα, καθώς και κατά πόσο αληθεύουν οι δύο υποθέσεις του Ερατοσθένη, δηλαδή ότι η Συήνη έχει γεωγραφικό πλάτος 23,5 μοίρες και ότι Συήνη και Αλεξάνδρεια βρίσκονται στον ίδιο μεσημβρινό. Μια ματιά σε έναν σύγχρονο χάρτη δείχνει ότι και οι δύο υποθέσεις ήταν λανθασμένες, αλλά το λάθος δεν ήταν μεγάλο: το γεωγραφικό πλάτος της Συήνης είναι 24,1 μοίρες, ενώ τα γεωγραφικά μήκη των δύο πόλεων διαφέρουν μόνο κατά μία μοίρα. Επομένως η βασική πηγή σφάλματος είναι το μήκος ενός σταδίου σε μέτρα. Θα έλεγε κανείς ότι έχουν διασωθεί πολλά αρχαία στάδια, οπότε δεν έχουμε παρά να μετρήσουμε πόσο μήκος έχει ένα από αυτά. Δυστυχώς τα στάδια δεν είχαν το ίδιο μήκος σε όλες τις περιοχές της αρχαίας Ελλάδας. Αν υποθέσουμε ότι ο Ερατοσθένης εννοούσε αττικά στάδια των 185 μέτρων, τότε το αποτέλεσμά του δίνει για την ακτίνα της Γης 7.400 χιλιόμετρα, τιμή 16% μεγαλύτερη από την πραγματική. Αν όμως εννοούσε αιγυπτιακά στάδια, πράγμα που είναι και το πιθανότερο, τότε κατά τον Ερατοσθένη η ακτίνα της Γης είναι 6.316 χιλιόμετρα, μόλις 1% μικρότερη από την πραγματική, που σήμερα γνωρίζουμε ότι είναι 6.366 χιλιόμετρα!
About the experiment ...
The experiment of Eratosthenes was based on the measurement of the height of the Sun the same day in two different locations, and the conviction of the great Greek mathematician that the Sun is very far from Earth, so that the rays to reach the planet almost parallel. From stories of travelers Eratosthenes learned that on June 21, the day of the summer solstice, the sun is reflected on the surface of the water of the city wells Syinis, that now the Egyptians call Aswan. From this information Eratosthenes concluded that Syini lies on the Tropic of Cancer, that is the parallel circle with latitude 23.5 degrees. The characteristic of sites located on the Tropic of Cancer is that at noon on June 21 the sun is at the zenith, that is exactly vertically upwards. Thus rays propagate along the vertical walls of the wells, are reflected at the water surface and back to the surface, making visible his reflection to an observer looking from the mouth of the well.
At noon on the day of the summer solstice Eratosthenes measured the height of the Sun in the city in which he resided, Alexandria, Egypt. The measurement was made using a tang, which is the oldest astronomical instrument in the history of science. The length of the shadow cast by its obelisk, divided by the height of the obelisk, gives us, as we learned in school, the tangent of the angle of the height of the sun. This angle, which by measuring Eratosthenis showed 7.2 degrees, is equal (as "on-off and on those" as remember older) with the central angle formed by two radii of the Earth with its ends Syini and Alexandria, provided that the two cities have the same longitude and are therefore on the same meridian. Because of the geometry we know that the distance between the two cities, the radius of the Earth and the angle measured Eratosthenes associated with the relationship distance / radius = 6,28x (7,2 / 360), the radius of the Earth is immediately if we know the distance between the two cities. At the time of Eratosthenes, around 250 BC, there was no accurate method of measuring such large distances. According to tradition, Eratosthenes commissioned walkers professionals to calculate, and their effect compared with the estimates Heads caravan. The final result was that the distance of Alexandria Syinis equals 5,000 steps, so the radius of the Earth resulting equal to 252,000 steps.
In order to assess the accuracy of measurement of Eratosthenes, we should know how much is the length of a stage in meters and how true the two cases of Eratosthenes, namely that Syini has latitude 23.5 degrees and that Syini and Alexandria are on the same meridian. A look at a modern map shows that both assumptions were wrong, but the error was not large: the latitude of Syinis is 24.1 degrees, while the longitudes of the two cities differ only by one degree. Therefore the main source of error is the length of a step in meters. One could say that they have preserved many ancient stages, so we only have to measure how long is one of them. Unfortunately stages were not the same length in all regions of ancient Greece. Assuming that Eratosthenes meant Attic steps of 185 meters, the result gives the radius of the Earth 7400 km, price 16% higher than the actual. But if he meant Egyptian stage, which is likely, then by Eratosthenes radius of Earth is 6316 km, only 1% less than the real, we now know that it is 6366 kilometers!
Rreth eksperimentit ...
Eksperimenti i Eratosthenes është bazuar në matjen e lartësisë së Diellit të njëjtën ditë në dy lokacione të ndryshme, si dhe bindja e matematikan i madh grek se Dielli është shumë larg nga Toka, në mënyrë që rrezet për të arritur planet pothuajse paralel. Nga tregimet e udhëtarëve Eratosthenes mësuar se më 21 qershor, ditën e solsticit veror, dielli është pasqyruar në sipërfaqen e ujit të puseve të qytetit Syinis, që tani Egjiptasit quajnë Aswan. Nga ky informacion Eratosthenes arriti në përfundimin se Syini shtrihet në Tropiku i Gaforres, që është rrethi paralele me gjerësi 23,5 gradë. Karakteristikë e vendeve të vendosura në Tropiku i Gaforres është se në mesditë më 21 qershor dielli është në zenit, që është pikërisht vertikalisht lart. Kështu rrezet përhapur përgjatë mureve vertikale të puseve, janë pasqyruar në sipërfaqen e ujit dhe përsëri në sipërfaqe, duke e bërë të dukshme reflektimin e tij për një vëzhgues në kërkim nga goja e mirë.
Në mesditë në ditën e solsticit veror Eratosthenes matur lartësinë e Diellit në qytetin në të cilin ai e banuar, Alexandria, Egjipt. Matja është bërë duke përdorur një erë e fortë, e cila është instrumenti më i vjetër astronomik në historinë e shkencës. Gjatësia e hedhur hije nga obelisku i saj, pjesëtuar me lartësinë e obelisk, na jep, siç kemi mësuar në shkollë, tangjent e kënd e lartë të diellit. Ky kënd, e cila duke matur Eratosthenis tregoi 7,2 gradë, është e barabartë (si "on-off dhe mbi ata" si të kujtuar më të vjetër) me kënd qendror i formuar nga dy radii e Tokës me skajet e saj Syini dhe Alexandria, me kusht që dy qytetet kanë të njëjtin gjatësi dhe janë në të njëjtin meridian. Për shkak të gjeometrisë ne e dimë se distanca mes dy qyteteve, rrezja e Tokës dhe kënd matur Eratosthenes i lidhur me marrëdhënie distancë / rrezja = 6,28x (7,2 / 360), rrezja e Tokës është menjëherë në qoftë se ne e dimë distanca ndërmjet dy qyteteve. Në kohën e Eratosthenes, rreth 250 pes, nuk kishte asnjë metodë të saktë të matur distancat tilla të mëdha. Sipas traditës, Eratosthenes porositur rrethoresh profesionistë për të llogaritur, dhe efekti i tyre në krahasim me vlerësimet kokat karavan. Rezultati përfundimtar ishte se distanca e Aleksandrisë Syinis është e barabartë me 5000 hapa, kështu që rrezja e Tokës rezultuar e barabartë me 252.000 hapa.
Për të vlerësuar saktësinë e matjes së Eratosthenes, ne duhet të dimë se sa është gjatësia e një faze në metra dhe sa e vërtetë të dy rastet e Eratosthenes, domethënë që Syini ka gjerësi 23,5 gradë dhe se Syini dhe Aleksandri janë në të njëjtën meridian. Një vështrim në një hartë moderne tregon se të dy supozimet e kishin gabim, por gabimi nuk ishte i madh: gjerësi e Syinis është 24,1 gradë, ndërsa longitudes e dy qyteteve të ndryshojnë vetëm nga një shkallë. Prandaj burimi kryesor i gabimit është gjatësia e një hap në metra. Dikush mund të thotë se ata kanë ruajtur shumë faza të lashta, kështu që ne vetëm duhet për të matur se sa kohë është një prej tyre. Për fat të keq fazat nuk ishin të njëjta gjatësi në të gjitha rajonet e Greqisë së lashtë. Duke supozuar se Eratosthenes menduar hapat papafingo e 185 metra, rezultat i jep rrezja e Tokës 7400 km, çmim 16% më të larta sesa aktual. Por në qoftë se ai do të thotë fazë egjiptiane, e cila është e mundshme, atëherë me Eratosthenes rrezja e Tokës është 6316 km, vetëm 1% më pak se reales, ne tani e dimë se ajo është 6366 kilometra!
About the experiment ...
The experiment of Eratosthenes was based on the measurement of the height of the Sun the same day in two different locations, and the conviction of the great Greek mathematician that the Sun is very far from Earth, so that the rays to reach the planet almost parallel. From stories of travelers Eratosthenes learned that on June 21, the day of the summer solstice, the sun is reflected on the surface of the water of the city wells Syinis, that now the Egyptians call Aswan. From this information Eratosthenes concluded that Syini lies on the Tropic of Cancer, that is the parallel circle with latitude 23.5 degrees. The characteristic of sites located on the Tropic of Cancer is that at noon on June 21 the sun is at the zenith, that is exactly vertically upwards. Thus rays propagate along the vertical walls of the wells, are reflected at the water surface and back to the surface, making visible his reflection to an observer looking from the mouth of the well.
At noon on the day of the summer solstice Eratosthenes measured the height of the Sun in the city in which he resided, Alexandria, Egypt. The measurement was made using a tang, which is the oldest astronomical instrument in the history of science. The length of the shadow cast by its obelisk, divided by the height of the obelisk, gives us, as we learned in school, the tangent of the angle of the height of the sun. This angle, which by measuring Eratosthenis showed 7.2 degrees, is equal (as "on-off and on those" as remember older) with the central angle formed by two radii of the Earth with its ends Syini and Alexandria, provided that the two cities have the same longitude and are therefore on the same meridian. Because of the geometry we know that the distance between the two cities, the radius of the Earth and the angle measured Eratosthenes associated with the relationship distance / radius = 6,28x (7,2 / 360), the radius of the Earth is immediately if we know the distance between the two cities. At the time of Eratosthenes, around 250 BC, there was no accurate method of measuring such large distances. According to tradition, Eratosthenes commissioned walkers professionals to calculate, and their effect compared with the estimates Heads caravan. The final result was that the distance of Alexandria Syinis equals 5,000 steps, so the radius of the Earth resulting equal to 252,000 steps.
In order to assess the accuracy of measurement of Eratosthenes, we should know how much is the length of a stage in meters and how true the two cases of Eratosthenes, namely that Syini has latitude 23.5 degrees and that Syini and Alexandria are on the same meridian. A look at a modern map shows that both assumptions were wrong, but the error was not large: the latitude of Syinis is 24.1 degrees, while the longitudes of the two cities differ only by one degree. Therefore the main source of error is the length of a step in meters. One could say that they have preserved many ancient stages, so we only have to measure how long is one of them. Unfortunately stages were not the same length in all regions of ancient Greece. Assuming that Eratosthenes meant Attic steps of 185 meters, the result gives the radius of the Earth 7400 km, price 16% higher than the actual. But if he meant Egyptian stage, which is likely, then by Eratosthenes radius of Earth is 6316 km, only 1% less than the real, we now know that it is 6366 kilometers!
Rreth eksperimentit ...
Eksperimenti i Eratosthenes është bazuar në matjen e lartësisë së Diellit të njëjtën ditë në dy lokacione të ndryshme, si dhe bindja e matematikan i madh grek se Dielli është shumë larg nga Toka, në mënyrë që rrezet për të arritur planet pothuajse paralel. Nga tregimet e udhëtarëve Eratosthenes mësuar se më 21 qershor, ditën e solsticit veror, dielli është pasqyruar në sipërfaqen e ujit të puseve të qytetit Syinis, që tani Egjiptasit quajnë Aswan. Nga ky informacion Eratosthenes arriti në përfundimin se Syini shtrihet në Tropiku i Gaforres, që është rrethi paralele me gjerësi 23,5 gradë. Karakteristikë e vendeve të vendosura në Tropiku i Gaforres është se në mesditë më 21 qershor dielli është në zenit, që është pikërisht vertikalisht lart. Kështu rrezet përhapur përgjatë mureve vertikale të puseve, janë pasqyruar në sipërfaqen e ujit dhe përsëri në sipërfaqe, duke e bërë të dukshme reflektimin e tij për një vëzhgues në kërkim nga goja e mirë.
Në mesditë në ditën e solsticit veror Eratosthenes matur lartësinë e Diellit në qytetin në të cilin ai e banuar, Alexandria, Egjipt. Matja është bërë duke përdorur një erë e fortë, e cila është instrumenti më i vjetër astronomik në historinë e shkencës. Gjatësia e hedhur hije nga obelisku i saj, pjesëtuar me lartësinë e obelisk, na jep, siç kemi mësuar në shkollë, tangjent e kënd e lartë të diellit. Ky kënd, e cila duke matur Eratosthenis tregoi 7,2 gradë, është e barabartë (si "on-off dhe mbi ata" si të kujtuar më të vjetër) me kënd qendror i formuar nga dy radii e Tokës me skajet e saj Syini dhe Alexandria, me kusht që dy qytetet kanë të njëjtin gjatësi dhe janë në të njëjtin meridian. Për shkak të gjeometrisë ne e dimë se distanca mes dy qyteteve, rrezja e Tokës dhe kënd matur Eratosthenes i lidhur me marrëdhënie distancë / rrezja = 6,28x (7,2 / 360), rrezja e Tokës është menjëherë në qoftë se ne e dimë distanca ndërmjet dy qyteteve. Në kohën e Eratosthenes, rreth 250 pes, nuk kishte asnjë metodë të saktë të matur distancat tilla të mëdha. Sipas traditës, Eratosthenes porositur rrethoresh profesionistë për të llogaritur, dhe efekti i tyre në krahasim me vlerësimet kokat karavan. Rezultati përfundimtar ishte se distanca e Aleksandrisë Syinis është e barabartë me 5000 hapa, kështu që rrezja e Tokës rezultuar e barabartë me 252.000 hapa.
Për të vlerësuar saktësinë e matjes së Eratosthenes, ne duhet të dimë se sa është gjatësia e një faze në metra dhe sa e vërtetë të dy rastet e Eratosthenes, domethënë që Syini ka gjerësi 23,5 gradë dhe se Syini dhe Aleksandri janë në të njëjtën meridian. Një vështrim në një hartë moderne tregon se të dy supozimet e kishin gabim, por gabimi nuk ishte i madh: gjerësi e Syinis është 24,1 gradë, ndërsa longitudes e dy qyteteve të ndryshojnë vetëm nga një shkallë. Prandaj burimi kryesor i gabimit është gjatësia e një hap në metra. Dikush mund të thotë se ata kanë ruajtur shumë faza të lashta, kështu që ne vetëm duhet për të matur se sa kohë është një prej tyre. Për fat të keq fazat nuk ishin të njëjta gjatësi në të gjitha rajonet e Greqisë së lashtë. Duke supozuar se Eratosthenes menduar hapat papafingo e 185 metra, rezultat i jep rrezja e Tokës 7400 km, çmim 16% më të larta sesa aktual. Por në qoftë se ai do të thotë fazë egjiptiane, e cila është e mundshme, atëherë me Eratosthenes rrezja e Tokës është 6316 km, vetëm 1% më pak se reales, ne tani e dimë se ajo është 6366 kilometra!
Παρασκευή 11 Ιουλίου 2014
Διάκριση για το Σχολείο μας στον διαγωνισμό Ingenius
Η επιλογή του σχεδίου που κατέθεσε το σχολείο μας στον διαγωνισμό Ingenius στα 20 κορυφαία της Ευρώπης αποτελεί μια ακόμη επιβράβευση των προσπαθειών μαθητών, εκπαιδευτικών, εξωτερικών συνεργατών και γονέων για μια ποιοτική παροχή εκπαιδευτικών ευκαιριών από το σχολείο μας. Το σχέδιο αφορούσε την αξιοποίηση της υδραυλικής ενέργειας σε βιοτεχνίες της περιοχής μας και υλοποιήθηκε από το 2010 - 2013 στα πλαίσια του εργαστηρίου μαθηματικών και φυσικών επιστημών με την εποπτεία του δασκάλου - εξωτερικού συνεργάτη Νίκου Μακρή. Μπορείτε να διαβάσετε τα επόμενα βήματα του διαγωνισμού καθώς και να συνδεθείτε στο σχετικό υπερσύνδεσμο για να δείτε την παρουσίαση και φωτογραφίες από τις παρουσιάσεις των μαθητών.
INGENIOUS COMPETITION FOR SCHOOLS
And finally, we are proud to announce the European finalists of the first inGenious school competition! Thank you all for participating and for your great work: you made it very hard to choose. And ultimately, thank you as we have all been rewarded by inspiring more pupils on STEM and STEM careers!
20 finalists have been selected, rather than 30 as initially foreseen, taking into account the number of entries received and the update of the overall competition strategy.
Next steps:
- First round of finalists are invited to present their work at the inGenious summer school 2014
- Top European finalists selected at the summer school will be invited to the European Ceremony Award that will take place in Warsaw, on 22 September 2014 (and not in Brussels, as initially planned) in conjunction with the STEM Educator Academy EMEA countries, organised by inGenious
Παρασκευή 31 Ιανουαρίου 2014
Πέμπτη 23 Μαΐου 2013
Αποτελέσματα και διακρίσεις μαθητριών και μαθητών στον 7ο Πανελλήνιο Μαθητικό Διαγωνισμό «Παιχνίδι και Μαθηματικά»
Σας ενημερώνουμε για τα αποτελέσματα του Μαθηματικού Διαγωνισμού με ενημέρωση που λάβαμε από την ΕΜΕ - Παράρτημα Βόλου. Θέλουμε να συγχαρούμε όλους τους μαθητές που συμμετείχαν στον διαγωνισμό ιδιαίτερα τους διακριθέντες καθώς και στους εκπαιδευτικούς των τάξεων Τοπαλίδου Σοφία, Κατσαρού Αποστολία και Αργυρίου Αφροδίτη καθώς και τον κ. Νίκο Μακρή για τη λειτουργία του Εργαστηρίου Μαθηματικών και Φυσικών Επιστημών του σχολείου μας:
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΠΑΡΑΡΤΗΜΑ Ν. ΜΑΓΝΗΣΙΑΣ ΒΟΛΟΣ
ΤΗΛ.: 6974818406 και 6944348872
e-mail: eme_volos@yahoo.gr
|
Βόλος 16 Μαΐου
2013
Αριθ. Πρωτοκ. 16
|
Προς τον Διευθυντή του Δημοτικού Σχολείου 1ο
Πορταριάς
κ. Καραγιάννη Ηρακλή
ΘΕΜΑ : Αποτελέσματα και διακρίσεις μαθητριών και μαθητών στον 7ο
Πανελλήνιο Μαθητικό Διαγωνισμό «Παιχνίδι
και Μαθηματικά»
Κύριε Διευθυντά,
Η Διοικούσα Επιτροπή του Παραρτήματος Ν.
Μαγνησίας της Ελληνικής Μαθηματικής Εταιρείας (Ε.Μ.Ε.) σας ενημερώνει ότι
ολοκληρώθηκε η βαθμολόγηση των γραπτών των μαθητών και μαθητριών, που έλαβαν
μέρος στον 7ο Πανελλήνιο Μαθητικό Διαγωνισμό «Παιχνίδι και
Μαθηματικά», που διοργάνωσε και πραγματοποίησε η Ελληνική Μαθηματική Εταιρεία,
υπό την αιγίδα του Υπουργείου Παιδείας δια Βίου Μάθησης και Θρησκευμάτων, που
πραγματοποιήθηκε στις 5 Απριλίου 2013.
Για μια ακόμη φορά θέλουμε να σας
ευχαριστήσουμε για την πολύτιμη βοήθεια σας, στην διενέργεια του Διαγωνισμού, όπως
επίσης θέλουμε να ευχαριστήσουμε τις και τους συναδέλφους δασκάλους, που
συνετέλεσαν στην άψογη διεξαγωγή του Διαγωνισμού και να ευχαριστήσουμε διπλά
όσους και όσες βαθμολόγησαν τα γραπτά του τμήματός των.
Χαιρετίζουμε τις μαθήτριες και τους μαθητές
που έλαβαν μέρος στον Μαθηματικό
Διαγωνισμό, αποδεικνύοντας έμπρακτα την εκτίμηση και αγάπη τους προς τα
Μαθηματικά. Συγχαίρουμε και τιμούμε τις μαθήτριες και τους μαθητές που
αρίστευσαν, που διακρίθηκαν, που πρώτευσαν στο τμήμα τους.
Στον διαγωνισμό αυτό με ελεύθερη
συμμετοχή, έλαβαν μέρος 2428 μαθήτριες και μαθητές, 1215 μαθητές Ε΄ τάξης και 1213
μαθητές ΣΤ΄ τάξης.
Κατά τη βαθμολόγηση των γραπτών
ακολουθήθηκε η διαδικασία των Πανελληνίων εξετάσεων Τα γραπτά βαθμολογήθηκαν σε
εκατονταβάθμια κλίμακα από δύο
βαθμολογητές και ο τελικός βαθμός είναι ο Μέσος Όρος των δύο βαθμολογήσεων. Αν
μεταξύ των βαθμολογητών υπήρχε διαφορά μεγαλύτερη από 12 μόρια, το γραπτό
αναβαθμολογήθηκε από τρίτο βαθμολογητή και αυτός είναι ο τελικός βαθμός του γραπτού.
Η Δ.Ε. του Παραρτήματος Ν. Μαγνησίας της Ε.Μ.Ε., αφού
έλαβε υπ’ όψη της : α) τις αναλυτικές οδηγίες του Διοικητικού Συμβουλίου της
Ε.Μ.Ε. της 1ης Μαρτίου 2012,
β) τις προτάσεις της Επιτροπής Διαγωνισμών του Παραρτήματος, γ) τις βαθμολογήσεις των Δασκάλων και
Μαθηματικών, που βαθμολόγησαν σε πρώτη και δεύτερη βαθμολόγηση, δ) την εμπειρία των προηγούμενων διαγωνισμών,
αποφάσισε να τιμήσει τους μαθητές που διακρίθηκαν.
Η
επιλογή των μαθητών που θα βραβευθούν έγινε ως εξής :
α) Αριστείο
και Μετάλλιο θα λάβουν όλοι οι
μαθητές που συγκέντρωσαν βαθμολογία πλήρες 100, (11 μαθητές της Ε΄ και 22
μαθητές της ΣΤ΄).
β) Αριστείο θα λάβουν οι μαθητές που
συγκέντρωσαν βαθμολογία από 95 μέχρι και 99, (45 μαθητές της Ε΄ και 41 μαθητές
της ΣΤ΄).
γ) Βραβείο θα λάβουν οι μαθητές που συγκέντρωσαν
βαθμολογία από 90 μέχρι και 94, (77 μαθητές της Ε΄ και 69 μαθητές της ΣΤ΄).
δ) Έπαινο
θα λάβουν οι μαθητές που συγκέντρωσαν βαθμολογία από 85 μέχρι και 89, (99
μαθητές της Ε΄ και 116 μαθητές της ΣΤ΄).
ε) Διάκριση, τέλος, θα λάβει όποιος
μαθητής ήλθε πρώτος, στο τμήμα του και οι ισοβαθμήσαντες με αυτόν, που
συγκέντρωσαν βαθμολογία κάτω από 85, ανεξαρτήτως βαθμού.
Οι Έπαινοι
και οι Διακρίσεις των πρώτων στα
τμήματά τους, θα σταλούν στα Σχολεία και η επίδοση τους θα γίνει στο κάθε
σχολείο από τον Διευθυντή του Σχολείου σε συνεργασία με τους Δασκάλους των
τμημάτων που συμμετείχαν στον Διαγωνισμό.
Η επίδοση των Αριστείων και των Βραβείων
θα γίνει σε ειδική πανηγυρική εκδήλωση, την καθιερωμένη Τελετή Βράβευσης, την
Κυριακή 2 Ιουνίου 2013 και ώρα 11.00, στο Πνευματικό Κέντρο της Ιεράς
Μητροπόλεως Δημητριάδος, (Κ. Καρτάλη – Ανθ. Γαζή) στο Βόλο.
Από
το σχολείο σας διακρίθηκαν οι παρακάτω μαθητές:
Α/Α
|
ΕΠΩΝΥΜΟ
|
ΟΝΟΜΑ
|
ΤΑΞΗ/ΤΜΗΜΑ
|
ΔΙΑΚΡΙΣΗ
|
ΣΤΟ ΤΜΗΜΑ
|
ΦΥΛΟ
|
1
|
ΟΙΚΟΝΟΜΟΥ
|
ΙΩΑΝΝΗΣ
|
Ε
|
ΑΡΙΣΤΕΙΟ
|
ΠΡΩΤΟΣ
|
Α
|
2
|
ΚΑΣΟ
|
ΛΑΟΥΡΑ - ΓΑΒΡΙΕΛΑ
|
Ε
|
ΕΠΑΙΝΟΣ
|
Κ
|
|
3
|
ΒΑΔΑΡΛΗΣ
|
ΑΓΓΕΛΟΣ
|
ΣΤ1
|
ΑΡΙΣΤΕΙΟ
|
ΠΡΩΤΟΣ
|
Α
|
4
|
ΜΠΑΡΜΠΑΚΟΣ
|
ΣΠΥΡΟΣ
|
ΣΤ1
|
ΑΡΙΣΤΕΙΟ
|
Α
|
|
5
|
ΜΠΙΛΑΛΗΣ
|
ΕΥΑΓΓΕΛΟΣ
|
ΣΤ1
|
ΕΠΑΙΝΟΣ
|
Α
|
|
6
|
ΓΚΙΝΑΡΙ
|
ΓΚΑΜΠΡΙΕΛ
|
ΣΤ2
|
ΑΡΙΣΤΕΙΟ
|
ΠΡΩΤΟΣ
|
Α
|
7
|
ΓΙΑΝΝΑΡΟΣ
|
ΧΡΗΣΤΟΣ
|
ΣΤ2
|
ΒΡΑΒΕΙΟ
|
Α
|
|
8
|
ΖΟΥΛΑΛΙ
|
ΑΡΗΣ
|
ΣΤ2
|
ΕΠΑΙΝΟΣ
|
Α
|
Results and discrimination schoolgirls and students in the 7th National Student Contest "Game and Mathematics"
We inform you about the results of the Mathematics Contest with information received from IPC - Annex Volos. We want to congratulate all the students who participated in the competition especially the winners and the teacher Nikos Makris for the operation of the Laboratory of Mathematics and Natural Sciences of our school and the work done:
GREEK MATHEMATICAL SOCIETY
ANNEX N. MAGNISIAS Volos
TEL: 6974818406 and 6944348872
e-mail: eme_volos@yahoo.gr
Volos May 16, 2013
No Protok. 16
To the Director of Primary School 1st Portaria
Mr Karagiannis Hercules
SUBJECT: Results and discrimination schoolgirls and students in the 7th National Student Contest "Game and Mathematics"
Main directors,
The Governing Board of Annex Magnesia the Greek Mathematical Society (HMS) informs you that completed the grading of student papers and schoolgirls who took part in the 7th National Student Contest "Game and Mathematics" organized and made by the Greek Mathematical Society, under the auspices of the Ministry of Education, Lifelong Learning and Religious Affairs, held on April 5, 2013.
Once again we want to thank you for your valuable help in conducting the tender, as we also want to thank our colleagues and teachers who contributed to the excellent conduct of the Contest and double thank all those who rated his writing sections of .
We welcome female students and students who participated in the Mathematical Contest, proving its appreciation and love for mathematics. We congratulate and honor the girls and students who excelled, who excelled, who excelled in their department.
In this contest with free membership, attended 2428 girls and boys students 1215 E Class and 1213 sixth grade students.
When marking the written procedure was followed for national exams The writings scored centigrade scale by two raters and the final grade is the average of the two scores. If between raters was no difference greater than 12 molecules, the anavathmologithike written by a third person and that is the final grade of the written.
The thesis Annex Magnesia the target company, after taking into account: a) the detailed instructions of the Board of EME of March 1, 2012, b) the Commission's proposals Competitions Annex, c) Ratings of Teachers and Mathematics, who rated in the first and second rating, d) the experience of previous competitions, decided to honor students who have excelled. The performance of excellence and the awards will be a gala event, the established awards ceremony Sunday, June 2, 2013 at 11:00, at the Cultural Center of the Metropolis Dimitriados (Kartali - Anth. Gazi) in Volos.
Your school distinguished the following students:
Ioannis Economou, E, Excellence, FIRST
Kaso LAURA - Gabriella, E, PRAISE
VADARLIS ANGEL, F, Excellence, FIRST
BARMPAKOS SPIROS, F, Excellence
BILALIS EYAGGELOS, F, PRAISE
GKINARI Gabriel, F, Excellence, FIRST
GIANNAROS CHRISTOS, F, PRIZE
ZOULALI ARIS, F, PRAISE
Rezultatet dhe Schoolgirls diskriminimit dhe studentëve në "lojë dhe Matematikës" Contest 7-të Kombëtar të Studentëve
Ne t'ju informojë për rezultatet e konkursit të matematikës me informatave të marra nga IPC - Aneksi Volos. Ne duam të përgëzoj të gjithë studentët të cilët morën pjesë në konkursin e sidomos fituesit dhe mësuesi Nikos Makris për funksionimin e Laboratorit të Matematikës dhe Shkencave Natyrore të shkollës sonë dhe punën e bërë:
SHOQËRIA greke matematikore
SHTOJCA N. MAGNISIAS Volos
TEL: 6974818406 dhe 6944348872
E-mail: eme_volos@yahoo.gr
Volos 16 Maj 2013
Asnjë Protok. 16
Për drejtorin e Shkollës fillore Portaria 1
Z. Karagiannis Hercules
TEMA: Rezultatet dhe diskriminimi schoolgirls dhe të studentëve në "lojës dhe Matematikës" Contest 7 Kombëtar të Studentëve
Drejtuesve kryesorë,
Bordi Drejtues i Aneksit magnezi Shoqëria greke matematike (HMS) ju informon që përfundoi e notave të nxënësve dhe nxënëseve letrave të cilët morën pjesë në konkursin e 7-të Kombëtar të Studentëve "Game Matematikë dhe" të organizuar dhe bëhet nga Shoqëria matematike greke, nën patronazhin e Ministrisë së Arsimit, të mësuarit gjatë gjithë jetës dhe Çështjeve Fetare, të mbajtur më 5 prill, 2013.
Edhe një herë ne duam të ju falënderoj për ndihmën tuaj të vlefshme në udhëheqjen e tenderit, si ne gjithashtu duam të falënderojmë kolegët tanë dhe mësuesit të cilët kontribuan për zhvillimin e shkëlqyer të konkursit dhe të dyfishtë të falënderoj të gjithë ata që të vlerësuarat seksionet e tij të shkrimit të .
Ne i mirëpresim të nxënëseve dhe nxënësve që morën pjesë në konkursin e matematike, duke dëshmuar vlerësimin e saj dhe dashurinë për matematikën. Ne urojmë dhe nderojmë vajzat dhe nxënësit të cilët shkëlqeu, i cili shkëlqeu, i cili shkëlqeu në departamentin e tyre.
Në këtë garë me anëtarësim të lirë, ku morën pjesë 2428 vajza dhe djem studentët Klasa E 1215 dhe 1213 studentët gjashta klasën.
Kur shënuar procedurë me shkrim është ndjekur për provimet kombëtare Shkrimet shënoi shkallë celsius nga dy vlerësuesve dhe nota përfundimtare është mesatarja e dy pikëve. Në qoftë se midis vlerësuesve kishte asnjë dallim më i madh se 12 molekulave, anavathmologithike shkruar nga një person i tretë dhe se është nota përfundimtare e shkruar.
Teza Aneksi magnezi kompania objektiv, pasi duke marrë parasysh: a) udhëzimet e hollësishme e Bordit të Eme nga 1 mars 2012, b) propozimet e Komisionit Konkurse Aneksi, c) Ratings e mësuesve dhe Matematikë, që të vlerësuarat në vlerësim të parë dhe të dytë, ç) përvojë e konkurseve të mëparshme, vendosi për të nderuar studentët të cilët kanë shkëlqeu. Performanca e përsosmërisë dhe çmime do të jetë një ngjarje gala, e themeluar Awards Ceremonia e diel, 2 qershor, 2013 në orën 11:00, në Qendrën Kulturore të Dimitriados Metropolis (Kartali -. Anth Gazi) në Volos.
Shkolla juaj dallohen nxënësit e mëposhtme:
Ioannis Economou, E, Përsosmëri, PARË
Kaso LAURA - Gabriella, E, Falënderimi
VADARLIS ANGEL, F, Përsosmëri, PARË
BARMPAKOS Spiros, F, Përsosmëri
BILALIS EYAGGELOS, F, lëvdojeni
GKINARI Gabriel, F, Përsosmëri, PARË
GIANNAROS Kristos, F, SHPËRBLIMI
ZOULALI ARIS, F, lëvdojeni
Εγγραφή σε:
Αναρτήσεις (Atom)